
KSPython
Release 0.1.0

Luiz Frederico Villalobos

Sep 29, 2020

CONTENTS:

1 Introduction 1

2 KSPython 3
2.1 KSPython package . 3

3 Indices and tables 13

Python Module Index 15

Index 17

i

ii

CHAPTER

ONE

INTRODUCTION

This is the documentation of a library called KSPython, made to help people design Kerbal Space Program rockets. It
features quick to use syntax for prototyping and simulations.

More details about the library, including examples, can be found at https://github.com/fred1608/KSPython.

1

https://github.com/fred1608/KSPython

KSPython, Release 0.1.0

2 Chapter 1. Introduction

CHAPTER

TWO

KSPYTHON

2.1 KSPython package

2.1.1 KSPython module

class KSPython.Stage
Stage class, that incorporate parts and is inserted into a rocket.

The stage class is one of the basic classes of this project. It is used as a collection of parts, and represents a
section of the rocket.

In the stage, a form of engine and fuel must be present. Other parts can be represented as extra mass and extra
cost.

Notes

• Different fuel types or engine types (solid or liquid) cannot be placed on the same stage.

• Only use one type of solid booster per stage.

add_extra_cost(cost)
Add extra cost to an stage. Used mainly to add the other parts that are not engines or fuel tanks.

Parameters

cost [int/float] Cost to be added.

add_extra_mass(mass)
Add extra mass to an stage. Used mainly to add the other parts that are not engines or fuel tanks.

Parameters

mass [int/float] Mass to be added [ton].

add_part(part)
Add a part to an stage.

Parameters

part [part] Part to be added to a stage.

add_parts(parts)
Add parts to an stage.

Parameters

parts [list of parts] Parts to be added to a stage.

calculate_cost()
Calculate the full cost of a stage.

3

KSPython, Release 0.1.0

Return

cost_sum [float] Total cost of stage.

calculate_empty_mass()
Calculate the mass of the stage while it is empty.

Return

mass_sum [float] Total mass of empty stage [ton].

calculate_full_mass()
Calculate the mass of the stage while it is full.

Return

mass_sum [float] Total mass of full stage [ton].

get_engine_performance(loc='atm')
Calculate the relative thrust and isp of all engines within this stage.

Return

thrust [float] Relative thrust for all engines of this stage [kN].

isp [float] Relative ISP value for all engies of this stage [s].

get_fuel_type()
Returns the fuel type being used within the same stage.

list_parts()
Prints all parts present in a stage.

class KSPython.Rocket(name=None)
Rocket class, it is where most of the calculations occur, it also receives stages as inputs.

The rocket activates each stage in order that it has been inserted, burning its fuel, turning its engine on and
discarding older stages.

It is possible to have engines fire before their stage by using schedule_engine method. Fuel will not be consumed
by the later stages, and will only be used by the one being fired (assuming they share a type and it is possible to
do so).

If ths is not the intended operation, fuel flow can also be restricted.

Parameter

name (optional) [string] Name of the rocket.

add_stage(stage)
Add a stage to an rocket.

Stages must be added in order, from first (ascension) to last

Parameters

stage [stage] Stage to be added to the rocket.

add_stages(stages)
Add stages to an rocket.

Stages must be added in order, from first (ascension) to last

Parameters

stages [list of stages] Stages to be added to the rocket.

4 Chapter 2. KSPython

KSPython, Release 0.1.0

adjusted_dV(dV_out=2500)
Calculates the true delta-V present in the rocket, by adjusting for the total required for leaving the atmo-
sphere.

Parameters

dV_out [int/float]

Delta-V required to leave the atmosphere of a given body [m/s].

• 2500 - Kerbin

Return

dV [float] Delta V of the rocket [m/s].

calculate_dV(loc='atm')
Calculates the delta-V present in the rocket.

Parameters

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

dV [float] Delta V of the rocket [m/s].

calculate_group_performance(stage_num, loc='atm')
Calculates the total thrust and relative ISP of all engines firing at a given stage that share common fuel.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

total_thrust [float] Total thrust of engines [kN].

isp [float] Relative ISP of engines [s].

calculate_isp(stage_num, loc='atm')
Calculates the relative ISP of all engines firing at a given stage.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

isp [float] Relative ISP of engines [s].

calculate_stage_dV(stage_num, loc='atm')
Calculates the delta-V present in a single stage.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

dV [float] Delta V of the stage [m/s].

2.1. KSPython package 5

KSPython, Release 0.1.0

calculate_thrust(stage_num, loc='atm')
Calculates the total thrust of all engines firing at a given stage.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

thrust [float] Total thrust of engines [kN].

calculate_total_cost()
Total cost of the rocket.

Return

total_cost [float] Total cost of the rocket.

calculate_total_mass()
Total mass of the rocket full.

Return

total_mass [float] Total mass of the rocket [ton].

calculate_twr(stage_num, g=9.81, loc='atm')
Calculates the thrust o weight ratio of the rocket for a given stage.

Parameters

stage_num [int] Stage to be analysed.

g [float] Gravity (default for Kerbin).

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

twr [float] Thrust to weight ratio.

calculate_upper_mass(stage_num)
Total mass of the rocket above the stage being analysed (without including it).

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

upper_mass [float] Upper mass of the rocket [ton].

change_payload(payload)
Adds a payload (or change its value, in case this method was used before) that will be carried by the rocket.

Parameters

payload [int/float] Payload to be added to a rocket [ton].

check_mass_lost(stage_num, mass_loss)
Verifies how much fuel mass a stage has, and if it is greater than a test value at any given stage.

Raises exception if test fails.

Parameters

6 Chapter 2. KSPython

KSPython, Release 0.1.0

stage_num [int] Stage to be analysed.

mass_loss [float] Mass to be verified if greather than fuel mass.

engine_burn_time(stage_num, loc='atm')
This method calculates the total time an stage will spend burning at maximum thrust.

Note that if an engine was started before its stage started, and it wasn’t able to receive fuel from upper
stages, the fuel lost before it started will be considered in decreasing total burn time.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

burn_time [float] Total burn time [kN].

find_when_engine_fired(stage_num)
If the stage being analysed has been scheduled to fire, return when. Else it returns itself.

Parameters

stage_num [int] Stage to be analysed.

Return

stage_fire [int] Stage where engines fire.

generate_report(g=9.81)
Prints a report with the most important informations of a rocket.

Parameters

g [float] Gravity (default for Kerbin).

num_stages()
Number of stages in a rocket.

Return

num_stage [int] Number of stages in a rocket.

performance_engines_firing(stage_num, stage_max=None, loc='atm')
This method gets engine peformance from all engines that are firing together in more complex stagings, at
the time of stage_num.

It can also be restricted to return only values up to a limit stage, defined by stage_max. This is useful when
calculating fuel flow with fuel restrictions.

Parameters

stage_num [int] Stage to be analysed.

stage_max [int] Maximum stage to which results will be brough (inclusing stage_max).

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

thrust_list [list of thusts] List the thurst of the engines [kN].

isp_list [list of ISPs] List the ISP of the engines [s].

prestage_mass_loss(stage_num, loc='atm')
Calculates how much mass an stage has lost before the rocket staged into it.

2.1. KSPython package 7

KSPython, Release 0.1.0

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

mass_loss [float] Total mass lost by the stage [ton].

rem_fuel_flow(stage_num)
Retrict the fuel flow in the rocket between the assigned stage and next one.

In normal operation, fuel will always be passed from smaller stages to the next automatically when appli-
cable. Using this will prevent the rocket from moving fuel upstage. This action is not required when fuel
flow is impossible, for example when using solid rocket boosters.

Parameters

stage_num [int] Stage where the operation will be executed.

schedule_engine(stage_fire, stage_present)
Schedule engines to fire before their normal stage.

Parameters

stage_fire [int] Stage to fire engines.

stage_present [int] Stage which is to fire their engines.

time_between_stages(stage_ini, stage_end, loc='atm')
This method returns the total cumulative time between the start of two stages.

Parameters

stage_ini [int] Initial stage.

stage_end [int] Final stage.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

total_time [float] Total time between stages [s].

total_poststage_mass_loss(stage_num, loc='atm')
Calculates how much mass the whole rocket has lost in stages above the stage being analysed when the
stage ended.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

Return

total_mass_lost [float] Total mass lost by the rocket [ton].

total_prestage_mass_loss(stage_num, loc='atm')
Calculates how much mass the whole rocket has lost in stages above the stage being analysed when it
started.

Parameters

stage_num [int] Stage to be analysed.

loc [{‘atm’, ‘vac’}] Location where the method will be performed.

8 Chapter 2. KSPython

KSPython, Release 0.1.0

Return

total_mass_lost [float] Total mass lost by the rocket [ton].

class KSPython.LiquidEngine(name, mass, cost, thrust_atm, thrust_vac, isp_atm, isp_vac)
Liquid engine class for generating new parts.

Parameters

name [string] The name of the part.

mass [float/int] The mass of the part.

cost [float/int] Part cost.

thrust_atm [float/int] Atmospheric engine thrust, in kN.

thrust_vac [float/int] Vaccum engine thrust, in kN.

isp_atm [float/int] Atmospheric engine ISP, in s.

isp_vac [float/int] Vaccum engine ISP, in s.

Example

>>> REM3 = LiquidEngine('RE-M3 "Mainsail" Liquid Fuel Engine', 6, 13000, 1379.
→˓03, 1500, 285, 310)

Note

• Basic parts have already been inserted through LiquidEngineParts, but new ones can be made by
utilising this class.

class KSPython.SolidEngine(name, mass_full, mass_empty, cost, thrust_atm, thrust_vac, isp_atm,
isp_vac)

Liquid engine class for generating new parts.

Parameters

name [string] The name of the part.

mass_full [float/int] The mass of the part when it is full.

mass_empty [float/int] The mass of the part when it is empty.

cost [float/int] Part cost.

thrust_atm [float/int] Atmospheric engine thrust, in kN.

thrust_vac [float/int] Vaccum engine thrust, in kN.

isp_atm [float/int] Atmospheric engine ISP, in s.

isp_vac [float/int] Vaccum engine ISP, in s.

Example

>>> RT10 = SolidEngine('RT-10 "Hammer" Solid Fuel Booster', 3.56, 0.75, 400,
→˓197.9, 227, 170, 195)

Note

• Basic parts have already been inserted through BoosterParts, but new ones can be made by utilising
this class.

class KSPython.RocketFuelTank(name, mass_full, mass_empty, cost)
Liquid fuel tank class for generating new parts.

2.1. KSPython package 9

KSPython, Release 0.1.0

Parameters

name [string] The name of the part.

mass_full [float/int] The mass of the part when it is full.

mass_empty [float/int] The mass of the part when it is empty.

cost [float/int] Part cost.

Example

>>> Jumbo64 = RocketFuelTank("Rockomax Jumbo-64 Fuel Tank", 36, 4, 5750)

Note

• Basic parts have already been inserted through RocketFuelTankParts, but new ones can be made by
utilising this class.

2.1.2 KSPython.LiquidEngineParts module

This submodule is responsible to house liquid rocket engines to be used on simulation.

Note:

• Id Name is the name assigned to the part to be imported and inserted into the code.

• LVN ‘Nerv’ Engine is not-supported, as the calculation currently does not differentiate between oxidizer and
liquid fuel.

• KR12 is divided into two parts, one for engine and one for fuel, both parts must be added if using it.

10 Chapter 2. KSPython

KSPython, Release 0.1.0

Id
Name

Name Mass
[ton]

Cost Thrust
atm

Thrust
vac

ISP
atm

ISP
vac

LV1R LV-1R “Spider” Liquid Fuel En-
gine

0.02 120 1.79 2 260 290

E2477 24-77 “Twitch” Liquid Fuel Engine 0.02 230 15.17 16 275 290
Mk55 Mk-55 “Thud” Liquid Fuel Engine 0.9 820 108.2 120 275 305
LV1 LV-1 “Ant” Liquid Fuel Engine 0.02 110 0.51 2 80 315
E487S 48-7S “Spark” Liquid Fuel Engine 0.13 240 16.56 20 265 320
LV909 LV-909 “Terrier” Liquid Fuel En-

gine
0.5 390 14.78 60 85 345

LVT30 LV-T30 “Reliant” Liquid Fuel En-
gine

1.25 1100 205.16 240 265 310

LVT45 LV-T45 “Swivel” Liquid Fuel En-
gine

1.5 1200 167.97 215 250 320

S3KS25 S3 KS-25 “Vector” Liquid Fuel En-
gine

4 18000 936.51 1000 295 315

T1 T-1 Toroidal Aerospike “Dart” 1 3850 153.53 180 290 340
REL10 RE-L10 “Poodle” Liquid Fuel En-

gine
1.75 1300 64.29 250 90 350

REI5 RE-I5 “Skipper” Liquid Fuel En-
gine

3 5300 568.75 650 280 320

REM3 RE-M3 “Mainsail” Liquid Fuel En-
gine

6 13000 1379.03 1500 285 310

KR12_e LFB KR-1x2 “Twin-Boar” Liquid
Engine

0 0 1866.67 2000 280 300

KR2L Kerbodyne KR-2L+ “Rhino” 9 25000 1205.88 2000 205 340
S3KS254 S3 KS-25x4 “Mammoth” Liquid

Engine
15 39000 3746.03 4000 295 315

CR7 CR-7 R.A.P.I.E.R. Engine 2 6000 162.3 180 275 305

2.1.3 KSPython.RocketFuelTankParts module

This submodule is responsible to house liquid rocket fuel tanks to be used on simulation.

Note:

• Id Name is the name assigned to the part to be imported and inserted into the code.

• KR12 is divided into two parts, one for engine and one for fuel, both parts must be added if using it.

Id Name Name Mass Full [ton] Mass Empty [ton] Cost
R4 R-4 ‘Dumpling’ External Tank 0.1238 0.0138 50
R11 R-11 ‘Baguette’ External Tank 0.3038 0.03338 50
R12 R-12 ‘Doughnut’ External Tank 0.3375 0.0375 147
OscarB Oscar-B Fuel Tank 0.225 0.025 70
FLT100 FL-T100 Fuel Tank 0.5625 0.0625 150
FLT200 FL-T200 Fuel Tank 1.125 0.125 275
FLT400 FL-T400 Fuel Tank 2.25 0.25 500
FLT800 FL-T800 Fuel Tank 4.5 0.5 800
X2008 Rockomax X200-8 Fuel Tank 4.5 0.5 800
X20016 Rockomax X200-16 Fuel Tank 9 1 1550

continues on next page

2.1. KSPython package 11

KSPython, Release 0.1.0

Table 1 – continued from previous page
Id Name Name Mass Full [ton] Mass Empty [ton] Cost
X20032 Rockomax X200-32 Fuel Tank 18 2 3000
Jumbo64 Rockomax Jumbo-64 Fuel Tank 36 4 5750
S33600 Kerbodyne S3-3600 Tank 20.25 2.25 3250
S37200 Kerbodyne S3-7200 Tank 40.5 4.5 6500
S314400 Kerbodyne S3-14400 Tank 81 9 13000
KR12_ft LFB KR-1x2 “Twin-Boar” Liquid Engine 42.5 10.5 17000
Mk2RS Mk2 Rocket Fuel Fuselage Short 2.29 0.29 750
Mk2R Mk2 Rocket Fuel Fuselage 4.57 0.57 1450
Mk3RS Mk3 Rocket Fuel Fuselage Short 14.29 1.79 2500
Mk3R Mk3 Rocket Fuel Fuselage 28.57 3.57 5000
Mk3RL Mk3 Rocket Fuel Fuselage Long 57.14 7.14 10000
C7BA C7 Brand Adapter - 2.5m to 1.25m 4.57 0.57 800
C7BAS C7 Adapter Slanted - 2.5m to 1.25m 4.57 0.57 800
Mk2125 Mk2 to 1.25m Adapter Long 4.57 0.57 1050
Mk2125L Mk2 Bicoupler 2.29 0.29 860
Mk2Bi Kerbodyne S3-14400 Tank 81 9 13000
A25Mk2 2.5m to Mk2 Adapter 4.57 0.57 800
Mk3Mk2 Mk3 to Mk2 Adapter 11.43 1.43 2200
Mk325 Mk3 to 2.5m Adapter 14.29 1.79 2500
Mk325S Mk3 to 2.5m Adapter Slanted 14.29 1.79 2500
Mk3375 Mk3 to 3.75m Adapter 14.29 1.79 2500
ADTP23 Kerbodyne ADTP-2-3 16.88 1.88 1623

2.1.4 KSPython.BoosterParts module

This submodule is responsible to house solid rocket engines to be used on simulation.

Note:

• Id Name is the name assigned to the part to be imported and inserted into the code.

Id
Name

Name Mass Full
[ton]

Mass
Empty [ton]

Cost Thrust
atm

Thrust
vac

ISP
atm

ISP
vac

RT5 RT-5 “Flea” Solid Fuel
Booster

1.5 0.45 200 162.91 192 140 165

RT10 RT-10 “Hammer” Solid
Fuel Booster

3.56 0.75 400 197.9 227 170 195

BACC BACC “Thumper” Solid
Fuel Booster

7.65 1.5 850 250 300 175 210

S1 S1 SRB-KD25k “Kick-
back”

24 4.5 2700 593.86 670 195 220

Sepra-
tron

Sepratron I 0.1 0 75 13.79 18 118 154

FM1 FM1 “Mite” Solid Fuel
Booster

0.375 0.075 75 11.012 12.5 185 210

F3S0 F3S0 “Shrimp” Solid
Fuel Booster

0.875 0.155 150 26.512 30 195 215

S217 S2-17 “Thoroughbred”
Solid Booster

70 10 9000 1515.217 1700 205 230

FM1 FM1 “Mite” Solid Fuel
Booster

144 21 18500 2948.936 3300 210 235

12 Chapter 2. KSPython

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

13

KSPython, Release 0.1.0

14 Chapter 3. Indices and tables

PYTHON MODULE INDEX

k
KSPython.BoosterParts, 12
KSPython.LiquidEngineParts, 10
KSPython.RocketFuelTankParts, 11

15

KSPython, Release 0.1.0

16 Python Module Index

INDEX

A
add_extra_cost() (KSPython.Stage method), 3
add_extra_mass() (KSPython.Stage method), 3
add_part() (KSPython.Stage method), 3
add_parts() (KSPython.Stage method), 3
add_stage() (KSPython.Rocket method), 4
add_stages() (KSPython.Rocket method), 4
adjusted_dV() (KSPython.Rocket method), 4

C
calculate_cost() (KSPython.Stage method), 3
calculate_dV() (KSPython.Rocket method), 5
calculate_empty_mass() (KSPython.Stage

method), 4
calculate_full_mass() (KSPython.Stage

method), 4
calculate_group_performance()

(KSPython.Rocket method), 5
calculate_isp() (KSPython.Rocket method), 5
calculate_stage_dV() (KSPython.Rocket

method), 5
calculate_thrust() (KSPython.Rocket method), 5
calculate_total_cost() (KSPython.Rocket

method), 6
calculate_total_mass() (KSPython.Rocket

method), 6
calculate_twr() (KSPython.Rocket method), 6
calculate_upper_mass() (KSPython.Rocket

method), 6
change_payload() (KSPython.Rocket method), 6
check_mass_lost() (KSPython.Rocket method), 6

E
engine_burn_time() (KSPython.Rocket method), 7

F
find_when_engine_fired() (KSPython.Rocket

method), 7

G
generate_report() (KSPython.Rocket method), 7

get_engine_performance() (KSPython.Stage
method), 4

get_fuel_type() (KSPython.Stage method), 4

K
KSPython.BoosterParts

module, 12
KSPython.LiquidEngineParts

module, 10
KSPython.RocketFuelTankParts

module, 11

L
LiquidEngine (class in KSPython), 9
list_parts() (KSPython.Stage method), 4

M
module

KSPython.BoosterParts, 12
KSPython.LiquidEngineParts, 10
KSPython.RocketFuelTankParts, 11

N
num_stages() (KSPython.Rocket method), 7

P
performance_engines_firing()

(KSPython.Rocket method), 7
prestage_mass_loss() (KSPython.Rocket

method), 7

R
rem_fuel_flow() (KSPython.Rocket method), 8
Rocket (class in KSPython), 4
RocketFuelTank (class in KSPython), 9

S
schedule_engine() (KSPython.Rocket method), 8
SolidEngine (class in KSPython), 9
Stage (class in KSPython), 3

17

KSPython, Release 0.1.0

T
time_between_stages() (KSPython.Rocket

method), 8
total_poststage_mass_loss()

(KSPython.Rocket method), 8
total_prestage_mass_loss()

(KSPython.Rocket method), 8

18 Index

	Introduction
	KSPython
	KSPython package

	Indices and tables
	Python Module Index
	Index

